Online State Space Model Parameter Estimation in Synchronous Machines
نویسندگان
چکیده
In this paper a new approach based on the Least Squares Error method for estimating the unknown parameters of the 3 order nonlinear model of synchronous generators is presented. The proposed approach uses the mathematical relationships between the machine parameters and on-line input/output measurements to estimate the parameters of the nonlinear state space model. The field voltage is considered as the input and the rotor angle and the active power are considered as the generator outputs. In fact, the third order nonlinear state space model is converted to only two linear regression equations. Then, easy-implemented regression equations are used to estimate the unknown parameters of the nonlinear model. The suggested approach is evaluated for a sample synchronous machine model. Estimated parameters are tested for different inputs at different operating conditions. The effect of noise is also considered in this study. Simulation results declare that the efficiency of the proposed approach.
منابع مشابه
Online State Space Model Parameter Estimation in Synchronous Machines
The purpose of this paper is to present a new approach based on the Least Squares Error method for estimating the unknown parameters of the nonlinear 3rd order synchronous generator model. The proposed method uses the mathematical relationships between the machine parameters and on-line input/output measurements to estimate the parameters of the nonlinear state space model. The field voltage is...
متن کاملAn Effective Attack-Resilient Kalman Filter-Based Approach for Dynamic State Estimation of Synchronous Machine
Kalman filtering has been widely considered for dynamic state estimation in smart grids. Despite its unique merits, the Kalman Filter (KF)-based dynamic state estimation can be undesirably influenced by cyber adversarial attacks that can potentially be launched against the communication links in the Cyber-Physical System (CPS). To enhance the security of KF-based state estimation, in this paper...
متن کاملOnline Aggregation of Coherent Generators Based on Electrical Parameters of Synchronous Generators
This paper proposes a novel approach for coherent generators online clustering in a large power system following a wide area disturbance. An interconnected power system may become unstable due to severe contingency when it is operated close to the stability boundaries. Hence, the bulk power system controlled islanding is the last resort to prevent catastrophic cascading outages and wide area bl...
متن کاملStator Fault Detection in Induction Machines by Parameter Estimation Using Adaptive Kalman Filter
This paper presents a parametric low differential order model, suitable for mathematically analysis for Induction Machines with faulty stator. An adaptive Kalman filter is proposed for recursively estimating the states and parameters of continuous–time model with discrete measurements for fault detection ends. Typical motor faults as interturn short circuit and increased winding resistance ...
متن کاملTechniques for Dynamic State Estimation of Machines in Power Systems
The knowledge of dynamic states of electrical machine, especially the relative rotor position and velocity, are very important for us to understand the machine performance and to possibly design advanced control systems. This paper addresses the state estimation problem of synchronous machines in power systems, both in deterministic and stochastic cases during small transients. The paper examin...
متن کامل